

T.P.A. Srl Tecnologie e Prodotti per l’Automazione - Via Carducci, 221 - 20099 Sesto S. Giovanni (MI) ITALY
Ph. +393666507029 - www.tpaspa.com info@tpaspa.it

TpaCutOEM

TpaCutOEM Library

User manual

v. 1.1.0

05/02/2024

http://www.tpaspa.com/

TpaCutOEM Library 2

1. PRESENTATION ... 5

1.1. VERSIONS ... 5

1.2. LICENSE .. 5

1.3. OWNERSHIP AND COPYRIGHT .. 5

2. USER GUIDE .. 5

2.1. CUT OPTIMIZATION .. 6

2.2. UNITS AND COORDINATES .. 6

2.3. DIRECTION AND DEVELOPMENT CORNER ... 7

2.4. MATCHING GROUPS AND FILTERS .. 7

2.4.1. Grain control.. 8

2.5. CUTS ... 8

2.5.1. Cutting Levels .. 9

2.5.2. Trims .. 11

2.5.3. Tension Free Cut .. 11

2.5.4. Sheet margins .. 11

2.6. OPTIMIZATION IN TPA_C .. 11

2.6.1. Progressive optimizations ... 12

2.6.2. Optimization criteria and priorities ... 12
2.6.2.1. Use of Sheets ... 13
2.6.2.2. Use of Rectangles .. 13

Extra placements .. 13
2.7. SUPPORT FOR MANAGING CUTTING PROJECTS .. 13

2.8. KNOWN LIMITS OF THE LIBRARY ... 13

3. GUIDE TO THE LIBRARY FUNCTIONS ... 14

3.1. LICENSE MANAGEMENT ... 14

3.1.1. IsValidLicense .. 14

3.2. CONSTANTS .. 14

3.3. ENUMERATIONS ... 14

3.3.1. CutError ... 14

3.4. STRUCTURES ... 15

3.4.1. OneRect ... 15

3.4.2. OneSheet ... 16

3.5. DEFINITION OF FUNCTIONS .. 16

3.5.1. General Functions .. 17
3.5.1.1. Version ... 17
3.5.1.2. LastError .. 17
3.5.1.3. ErrorMessage... 17

3.5.2. Functions corresponding to general settings of cut optimization ... 17
3.5.2.1. NumberCustom ... 17
3.5.2.2. NumberRectParam .. 17
3.5.2.3. EnableRectEdge ... 17
3.5.2.4. OrderSheetDim .. 17
3.5.2.5. OrderBeforeScrap .. 18
3.5.2.6. OrderStrips .. 18
3.5.2.7. OrderSubStrips .. 18

3.5.3. Functions related to general assignments of a project ... 19
3.5.3.1. Unit .. 19

TpaCutOEM Library 3

3.5.3.2. CutterDiameter .. 19
3.5.3.3. Direction .. 19
3.5.3.4. Corner .. 19
3.5.3.5. MaxCutLevels .. 19
3.5.3.6. TensionGap .. 20
3.5.3.7. PreCut .. 20
3.5.3.8. Longcut .. 20
3.5.3.9. Transvcut ... 20
3.5.3.10. Zcut ... 20
3.5.3.11. Custom1, Custom2, …, Custom10 ... 20
3.5.3.12. ClearAll .. 20

3.6. DEFINITION OF RECTANGLES ... 20

3.6.1. AddRct ... 20

3.6.2. ClearRct ... 21

3.6.3. CountRect .. 21

3.6.4. ReadRect ... 21

3.6.5. ReadRectIndex ... 21

3.7. DEFINITION OF SHEETS .. 21

3.7.1. AddSheet ... 22

3.7.2. ClearSheet ... 22

3.7.3. CountSheet .. 22

3.7.4. ReadSheet.. 22

3.7.5. ReadSheetIndex ... 22

3.8. CUTTING SOLUTION .. 23

3.8.1. Compute .. 23

3.9. OPTIMIZATION RESULTS ... 23

3.9.1. NumberOfSolutions ... 23

3.9.2. SelectSolution .. 23

3.9.3. SolutionSheets ... 24

3.9.4. GetSheetId ... 24

3.9.5. NumberOfRepetitions .. 24

3.9.6. UsedSheets .. 24

3.9.7. UsedRects .. 24

3.9.8. FitnessSheet ... 25

3.9.9. ReadResolRect ... 25

3.9.10. NumberOfCuts ... 26

3.9.11. ReadResolCut... 26

3.9.12. CutLinear ... 27

3.9.13. CutArea .. 27

3.9.14. MarginArea ... 27

3.9.15. GetWaste ... 28

3.9.16. Estimated time .. 28

3.9.17. Estimated cost ... 28

3.9.18. Export .. 29
File structure corresponding to a cutting pattern ... 29

<GENERALSETTINGS> node... 30
<TECHSETTINGS> node ... 30
<DIM> node .. 30
<DIMTRIMS> node .. 30
<DATA> node .. 30
<PIECESLIST> node .. 30

TpaCutOEM Library 4

<DRAW> node ... 31
3.10. PROJECT SERIALIZATION FUNCTIONS ... 34

3.10.1. SaveProject .. 34

3.10.2. LoadProject .. 35

3.10.3. ImportProject .. 35

4. GUIDE TO USING THE LIBRARY .. 37

4.1. TYPICAL FLOW CHART .. 37

4.2. PRELIMINARY CHECKS .. 37

4.3. ASSIGNMENT OF GENERAL OPERATION SETTINGS .. 37

4.4. ASSIGNMENT OF GENERAL PROJECT SETTINGS .. 37

4.5. ASSIGNMENT OF RECTANGLES ... 38

4.6. ASSIGNMENT OF SHEETS .. 38

4.7. PERFORMANCE OF THE CUT OPTIMIZATION .. 38

4.7.1. Acquiring the result of the solution ... 38
4.7.1.1. Example code: How to acquire general information of the solution sheets.. 38
4.7.1.2. Example code: Acquiring cycle of sheet placements ... 39
4.7.1.3. Example code: Acquiring cycle of sheet cuts ... 39

4.7.2. Managing multiple solutions ... 39
4.7.2.1. Example code: Navigation between Multiple solutions .. 39

4.8. SAVE AND READ A TPA_C PROJECT .. 40

4.8.1. Example code .. 40

TpaCutOEM Library 5

1. PRESENTATION

TpaCutOEM.dll (aka TPA_C) is a product designed for software developers and can be integrated as a library

for 32- and 64-bit Windows architecture.

TPA_C is a library developed for the automatic optimization of linear cutting of rectangular shapes and allows

developing applications of optimization of 2D placements in various application sectors.

The typical use of the library is related to the programming of cutting machines.

The library must be integrated as part of your product.

1.1. VERSIONS

Version Release date Comments

1.1.0 05.02.2024

1.2. LICENSE

TPA_C operation requires hardware key verification.

The key also allows to save the optimization result in XML format.

1.3. OWNERSHIP AND COPYRIGHT

No part of this document may be reproduced, modified, integrated, or translated without prior written per-

mission of the copyright owner.

Information in this document is subject to change and does not represent a commitment on the part of TPA

Srl.

Although every effort has been made to ensure the accuracy of the information set out in this document, TPA

Srl assumes no liability of any kind for any loss or damage caused by errors, omissions or statements of any

kind in this document, its updates, its additions, or special editions, regardless of whether such errors are

omissions or statements resulting from negligence, accident or any other cause. Furthermore, TPA Srl does

not assume any liability deriving from the use of information described herein; nor any liability for accidental

or consequential damages resulting from the use of this document.

For further information, please contact:

T.P.A. Srl Tecnologie e Prodotti per l’Automazione - Via Carducci, 221 - 20099 Sesto S. Giovanni (MI) -

ITALY

Phone: +393666507029

e-mail: info@tpaspa.it

or visit our website:

www.tpaspa.com

2. USER GUIDE

TPA_C assigns the TpaRctCut class in the TpaCutOEM namespace.

TPA_C calculates the linear cut of rectangular shapes in rectangular placement areas.

A rectangle is a single entity that can be made by making multiple cuts over a sectional area.

Sectional areas are called sheets and they too are always rectangular in shape.

mailto:info@tpaspa.it
http://www.tpaspa.com/

TpaCutOEM Library 6

The assignment of rectangles allows defining information of a generic (available quantity, placement priority)

or generally technological nature (thickness, material, grain, possibility of rotation, …). For each type of rec-

tangle, both the requested quantity to be placed and an extra quantity that can be placed in addition, to fill

the sheets already used, are defined.

The assignment of sheets allows defining settings of a generally technological nature (thickness, material,

grain, …). For each type of sheet, you define the quantity available.

Information of a generally technological nature makes it possible to apply matching and/or filters conditions

between rectangles and sheets to the optimization process.

The result of the optimization provides the user with detailed information about the best way to cut rectan-

gles from the available sheets. The optimization result can assign one or more sheets: each sheet contains

the cut of at least one rectangle.

The figure shows an example of optimizing a sheet, otherwise called cutting pattern:

2.1. CUT OPTIMIZATION

The rectangles indicated on the cutting pattern of a sheet are made by sequencing horizontal and vertical cuts,

alternated in subsequent nesting operations.

The result of the cutting pattern that is computed for a sheet is to cut the single parts by alternating splitting

into horizontal and vertical cuts, until all the required partitions are achieved.

The set of calculation processes leading to a cutting solution is referred to as optimization step.

Cutting a rectangle can apply 0° or 90° rotations (counterclockwise) to the same rectangle.

Optimization may propose up to a maximum of 5 solutions, which the user may evaluate for choosing the best

solution.

2.2. UNITS AND COORDINATES

TpaCutOEM Library 7

In TPA_C metric values (coordinates, dimensions) are expressed in the unit defined as [mm] or [inch] in the

Unit property (0= [mm], 1= [inch]).

TPA_C works in a 2D Cartesian coordinate system:

• the coordinate point [0;0] is placed in the bottom left corner of the sheet

• X is the horizontal axis, positive to the right

• Y is the vertical axis, positive upwards.

The coordinates of the cuts that are calculated always refer to the bottom left corner of the sheet.

2.3. DIRECTION AND DEVELOPMENT CORNER

Direction assigns the direction for the first cut of a sheet:

• horizontal direction: cuts will start horizontally, with the initial cutting level of 1

• vertical direction: cuts will start vertically, with an initial cutting level of 0 (otherwise called: head cuts)

• direction non set: each single optimization sheet may have either vertical or horizontal direction, de-

pending on which gets the best result for that sheet.

Corner selection assigns the starting vertex for the sheet placements, with scraps accumulated around the

opposite corner. There are four values:

• 0 = left-bottom

• 1 = left-top

• 2 = right-bottom

• 3 = right-top

TPA_C always uses the Corner setting as assigned.

Information corresponds to Direction and Corner project general assignments.

2.4. MATCHING GROUPS AND FILTERS

The assignment of rectangles and sheets has generally technological settings to apply matching and/or filter

conditions between rectangles and sheets.

Let us first examine the settings that help to apply matching conditions.

The affected settings correspond to fields in OneRect and OneSheet structures:

• Thickness: (double type) thickness

• Material: (string type) generic material assignment

• Grain: (integer type) assigns grain or grain direction.

 Thickness field: matching is assessed on the equality of set values, if their difference is smaller than the ep-

silon of linear comparison corresponding to 0.1 mm.

Examples of assigning matching groups on thickness of rectangles and sheets:

• two rectangles are assigned (identifiers: 1, 2) with field Thickness =18.0

• a rectangle is assigned (identifier: 3) with field Thickness =25.0

• a sheet is assigned (identifier: 1) with field Thickness =0.0

• a sheet is assigned (identifier: 2) with field Thickness =18.0

this situation determines the assignment of 3 matching groups:

• group 1, matching Thickness =18.0

• group 2, matching Thickness =25.0

• group 3, matching Thickness =0.0.

Each group is optimized separately. From the example above, it is clear that only group 1 can determine a

cutting solution, making possible the association between rectangles and sheets: identification rectangles (1,

2) can be placed on sheets with identifier 2.

TpaCutOEM Library 8

When multiple values are assigned (for example, also for material), matching associations between rectan-

gles and sheets can become more complex. An example:

• group 1, matching Thickness = 18.0 and Material= “mahogany”

• group 2, matching Thickness = 18.0 and Material= “birch”

• group 3, matching Thickness = 25.0 and Material= “mahogany”

2.4.1. GRAIN CONTROL

The field appears in OneRect and OneSheet structures, corresponding to the grain or grain direction assign-

ment:

• assignment takes place in the Grain field of the structures

• the technological meaning of information depends on the sheet material (e.g., wood, veneer, metal).

There are three assignable values:

• 0 (None): does not assign grain

• 1 (X): assigns grain along the horizontal direction

• 2 (Y): assigns grain along the vertical direction.

The grain assignment does not necessarily lead to determining matching separate groups: rectangles with

the same value in the Grain field can be placed in sheets of different groups and/or with the same or different

value in the Grain field.

Let us see which criteria are applied, if rotation to the rectangle is allowed:

• a rectangle with Grain=(1, 2) can be placed with any rotation in sheet with Grain=0

• a rectangle with Grain=(1, 2) can be placed in sheet with Grain=(1, 2) rotating in such a way that the

assigned direction for both is respected

• a rectangle with Grain=0 can be placed with any rotation regardless of the Grain field of the sheets.

A rectangle with Grain=(1, 2), but excluding the possibility of rotation, can only be placed on sheets with the

same Grain.

If a rectangle with rotation enabled and with Grain=(1, 2) can be placed in different sheets for grain, no priv-

ileged placement is guaranteed in sheet with the same grain assigned.

2.5. CUTS

Various information helps to determine the placement and sequence of cuts, both in relation to the rectangles

to be cut and to the sheet edges.

General information assigns the diameter of the tool used for the cuts: it corresponds to the CutterDiameter

setting.

The tool is used for all cuts required by the cutting pattern.

There are two types of cuts:

 Rip cuts: the cut runs through the panel along X dimension.

 Cross cuts: the cut runs through the panel along Y dimension.

The cuts that are assigned in a cutting pattern are differentiated based on specific codes, referred to as cutting
levels below:

• Head cut: cross cut type that generates a panel (level 0): a head cut can only result from optimization

of a sheet with Vertical direction

• Rip cut: longitudinal cut that generates a strip along the entire length of the panel (level 1)

• Cross cut: transverse cut that generates an element by sectioning a strip (level 2)

• Z: longitudinal cut that generates an element by sectioning a portion of the panel obtained with level 2
cut (level 3)

TpaCutOEM Library 9

• W: transverse cut that generates an element by sectioning a portion of the panel obtained with level 3
cut (level 4)

• Cut #5: longitudinal cut that generates an element by sectioning a portion of the panel obtained with
level 4 cut (level 5)

• Cut #6: transverse cut that generates an element by sectioning a portion of the panel obtained with
level 5 cut (level 6).

The sequence of levels matches the number of times a base material has to be turned from longitudinal cut to
cross cut and vice versa to complete a piece. Each turn of a panel or strip will increase the level by one. This
can be illustrated as follows, let's say for the case of Horizontal direction:

 the first cut direction is level 1 (longitudinal)

 the material strips obtained will have to be cut in the other direction (level 2, cross)

 if necessary, a single portion thus obtained may be divided by further longitudinal cuts (level 3)

 and so on, up to a maximum of 6 cutting levels.

2.5.1. CUTTING LEVELS

The sequence of cuts in a pattern obtained from the optimization respects a maximum level of cuts, as assigned
in the MaxCutLevels property:

 Level 1: only head cuts (if optimization in Vertical direction) or rip cuts (if optimization in Horizontal
direction) are inserted into a pattern

 Level 2: only cross cuts are inserted into a strip

 Level 3: only Z cuts are inserted into a cross element

 Level 4: only W cuts are inserted into a z element

 Level 5: only level 5 cuts are present in a W element

 Level 6: no cuts beyond level 6 are inserted in the optimizer

The maximum cutting level is 6. Level 5 and 6 cuts do not have a specific name.

The number of levels allowed will determine the complexity of the cutting patterns:

 a limitation on the number of levels will simplify the cutting patterns

 simplified cutting patterns will reduce cutting operation time

 a limitation on the number of levels can lead to greater waste of material.

The following pictures correspond to different values of MaxCutLevels property:

MaxCutLevels Direction= Horizontal Direction= Vertical

TpaCutOEM Library 10

1

2

3

4

TpaCutOEM Library 11

Different colors are used to represent the different cutting levels:

 Head cuts: green color

 Rip cuts (level 1): red color

 Cross cuts (level 2): brown color

 Z cuts (level 3): olive green color

 W cuts (level 4): purple color.

2.5.2. TRIMS

You can add spacing based on the cutting levels using the following double type properties:

- PreCut: Quantity added to all head cuts (zero level cuts)

- LongCut: Quantity added to all first level cuts

- TransvCut: Quantity added to all second level cuts

- ZCut: Quantity added to all third level cuts.

The set values are added to the cutting diameter.

For example: with (CutterDiameter = 5, LongCut = 8), all first level cuts have thickness of 13.

2.5.3. TENSION FREE CUT

The functionality referred to as Tension Free Cut (TFC) allows additional cuts to be added at the longitudinal

cuts, so as to delete the “banana” effect due to tensions in the sheet.

The assignment corresponds to the property of double type TensionGap: the value is added to both the cut-

ting diameter and the LongCut parameter.

2.5.4. SHEET MARGINS

Given the sheet dimensions, it is possible to assign side areas that are not useful for placement purposes,

differentiated by side. The picture shows a sheet of dimensions LxH and with four different outer margins as-

signed: the useful area for placements is the inner coloured one.

The outer margins setting corresponds to OneSheet structure fields: BorderLeft, BorderRight, BorderTop and

BorderBottom.

For all fields it is possible to assign a null or positive value.

2.6. OPTIMIZATION IN TPA_C

TpaCutOEM Library 12

Optimization in TPA_C has the primary aim of achieving the best overall use of the available material (sheets)

with the placements requested (rectangles) and with the conditions set (general settings).

The optimization essentially runs a number of attempts and chooses the result of the attempt offering the

best use and, therefore, the best solution.

The sequence of these attempts modifies certain parameters as to generate different placement situations.

The nature of these that we generally define as parameters concerns:

• changing the filling logic of a sheet

• changing the placement order of rectangles

• changing the rotation of a rectangle

• changing the cut direction (horizontal or vertical; only if enabled with the Direction property).

But what qualifies a situation as better than another one?

Let us take a look at some very general criteria:

- the largest placement area is preferred. A solution that has pieces occupying 93.0% of the sheets is bet-

ter than a solution that results in a 88.00% filling;

- the “most reusable” solution is preferred (it means having a single scrap area large enough to be re-

used);

- additional assessment criteria are be applied in respect of the arrangement of pieces, as well as the

number and size of the pieces placed and the internal scraps.

The optimization procedure leads to the definition of a solution that can be determined in a repetitive man-

ner, keeping unchanged all boundary settings that may affect its development.

2.6.1. PROGRESSIVE OPTIMIZATIONS

The optimizer may calculate and make more solutions accessible, up to a maximum of 5.

All proposed solutions use the same number of sheets.

All calculated optimizations remain available until:

• a new total optimization (see function: Compute)

• a total initialization request (see function: ClearAll).

2.6.2. OPTIMIZATION CRITERIA AND PRIORITIES

Upon optimization request, TPA_C starts to analyse the assigned lists and the next optimization step.

The list analysis may encounter error situations, which may result in the optimization being cancelled.

Let us take a look at this first step of analysis, distinguishing between rectangles and sheets.

Checks on the list of rectangles:

• Non-enabled rectangles are excluded from optimization (Enable field in OneRect structure)

• Rectangles with both null requested quantity (N field) and extra (Extra field) are excluded from the op-

timization

• Rectangles with one or both dimensions assigned < 1.0 mm are excluded from optimization

• Rectangles that do not match any valid sheets are excluded from optimization (example: rectangle with

Material=”abc” and no sheet with the same setting)

Checks on the list of sheets:

• Non-enabled sheets are excluded from optimization (Enable field in OneSheet structure)

• Sheets with null available quantity (N field) are excluded from optimization

• Sheets with one or both dimensions < 1.0 mm are excluded from optimization

• Sheets that do not match any valid rectangles are excluded from optimization (example: sheet with

Material= “abc” and no rectangle with the same setting).

The reported result must be able to use at least one element for each list of rectangles and sheets.

Starting the optimization process applies specific criteria to assign the order in which rectangles and sheets

are used.

TpaCutOEM Library 13

2.6.2.1. USE OF SHEETS

The use of sheets follows an order that can take different situations into account.

Now let us take a look at the main criteria that are applied to the initial sorting of sheets. Points are applied

according to the order given, moving on to the next if it has not been possible to make a choice prevailing over

the previous point:

- sort by ascending priority (except 0, which runs last)

- sort the sheets marked as scrap first (IsScrap field in OneSheet structure), with equal priority

- the OrderSheetDim general setting enables sheet sorting by size (sort by descending area)

- sort by ascending type (ID field in OneSheet structure) in the same way as the other conditions in the

previous points.

The UseBeforeScrap general setting enables the application of the sheet qualification field to be applied as

scrap.

2.6.2.2. USE OF RECTANGLES

Now let us look at the main criteria that are applied to the initial sorting of rectangles. Points are applied ac-

cording to the order given, moving on to the next if it has not been possible to make a choice prevailing over

the previous point:

- sort by ascending priority (except 0, which runs last)

- rectangles with requested quantity assigned (positive). I.e.: sort after rectangles only requiring extra

placements

- sort by descending area

- rectangle with no rotation possible

- rectangle with larger requested quantity

- rectangle with ascending type (ID field in OneRect structure)

EXTRA PLACEMENTS

It is possible to assign extra placements for rectangles, in addition to or as an alternative to the ones actually

requested. That is to say, for a rectangle it is possible to assign also or only extra placements.

Information is assigned in the Extra field of OneRect structure: a positive value directly assigns the number

of extra placements.

Extra placements are used on a sheet only after checking that it is no more possible to place the rectangles
requested. It is therefore clear that under no circumstances a sheet can be used only to apply extra place-
ments.

2.7. SUPPORT FOR MANAGING CUTTING PROJECTS

A cutting project is understood as the set of all information assigned to the TPA_C library:

- overall enable settings

- lists of rectangles, sheets.

TPA_C exposes methods of serialization of a project. These methods are particularly useful for:

- testing situations

- TPA_C integration cases in which information provided here in the list assignment structures is suffi-

cient.

2.8. KNOWN LIMITS OF THE LIBRARY

Assignment of rectangles

TpaCutOEM Library 14

• up to 500 different rectangles can be assigned

• for each rectangle, a maximum placeable quantity of 999 can be assigned.

Assignment of sheets
• up to 100 different sheets can be assigned

• for each sheet, a maximum usable quantity of 999 can be assigned.

3. GUIDE TO THE LIBRARY FUNCTIONS

This chapter describes in detail the properties and functions of TPA_C.

3.1. LICENSE MANAGEMENT

3.1.1. ISVALIDLICENSE

Boolean type property testing the key presence and status.

Value

True if the module is enabled, False otherwise.

Notes

The property query performs an actual key reading, but only if no cut optimization is running.

No optimization can be performed if the key is not valid.

The presence and status of the key are verified by the library on a time basis.

3.2. CONSTANTS

The following constants are available in the TpaCutOEM.TpaRctCut class:

MAX_ROW_ITEMS 500 Maximum number of rectangle types

MAX_ROW_N 999 Maximum value of placements requested for one rectangle

MAX_SHEET_ITEMS 100 Maximum number of sheet types

MAX_SHEET_N 999 Maximum quantity of placements available for one sheet

MAX_CUSTOM_SETTINGS 10 Maximum number of project general settings

MAX_LL_SETTINGS 250 Maximum length of single general setting of project (string

length)

MAX_ROW_PARAMS 15 Maximum number of general settings in a single rectangle

MAX_LL_PARAMS 50 Maximum length of single general setting of rectangle (string

length)

MAX_CUT_LEVELS 6 Maximum number of cutting levels

3.3. ENUMERATIONS

The following enumerations are available in the TpaCutOEM namespace.

3.3.1. CUTERROR

Assignment of library-managed errors:

TpaCutOEM Library 15

• ErrorNone: no error

• ErrorKey: license not verified

• ErrorMemory: memory error

• ErrorRectEmpty: empty rectangle list or no rectangle enabled or placeable

• ErrorSheetEmpty: empty sheet list or no sheet enabled

• ErrorNoMatch: no corresponding match with the sheet list

• ErrorIOfile: error managing project files (path and/or file access error, …)

• ErrorFileNotValid: error managing project files (not valid format)

• ErrorNoSolutions: no solution is assigned

• ErrorUnexpected: general or unmanaged error (e.g., invalid assigned index).

3.4. STRUCTURES

The following structures are available in the TpaCutOEM namespace.

3.4.1. ONERECT

General assignment of a rectangle. The structure exposes methods for initializing fields to default values.

- int ID: numeric identifier of rectangle (univocal, strictly positive) {default = 0}

- bool Enable: enabling the use of the rectangle (false = does not place the rectangle) {default =

true}

- string Label: descriptive name of the rectangle (can be =""; maximum length 50 characters) {default

=""}

- double Length: length (>= 0.0) {default = 0.0}

- double Height: height (>= 0.0) {default = 0.0}

• values are in units of: Unit

- double Thickness: thickness (>= 0.0) {default = 0.0}.

• assign the field with differentiated values if you need to match the corresponding sheet field

• values are in units of: Unit

- int N: quantity requested for placements (>= 0) {default = 0; maximum value = 999}

- int Extra: extra quantity available (significant if > 0) {default = 0; maximum value = 999}

• The N field sets the quantity requested for the rectangle. Extra field sets the extra quantity. Extra

pieces are only inserted after trying to place the requested quantities of all rectangle types.

- string Material: material {default = “”}

• assign the field with differentiated values if you need to match the corresponding sheet field

• the real meaning of the field lies with the external application

- int Grain: grain direction (0 = none; 1 = horizontal; 2 = vertical) {default = 0}

• assign the field with a value of 1 or 2 if you need to match the corresponding sheet field. A rectan-

gle with field (1, 2) can be placed on a sheet with grain only if the direction of the grain itself can

be observed (with possible application of rotation); a rectangle without grain is applicable to sheets

with any Grain field

- int Priority: priority of use (>= 0) {default = 0}

• rectangles with lower number priority have placement priority in the cutting pattern solution

• rectangles with priority 0 will be inserted last

- bool Rotate: rotation (false = not allowed; true = allowed) {default = true}

• true value is to enable 90° counterclockwise rotation

- string MatEdge1, MatEdge2, MatEdge3, MatEdge4: Material of the edges, differentiated on the 4 sides of

the rectangle (top, bottom, right, left, respectively) {default = “”}

- double ThickEdge1, ThickEdge2, ThickEdge3, ThickEdge4: Thickness of the edges, differentiated on the

4 sides of the rectangle {default = 0}

- bool BoolEdge1, BoolEdge2, BoolEdge3, BoolEdge4: enabling the rectangle to reduce the thickness cor-

responding to edges, differentiated on the 4 sides of the rectangle, to be used in cut optimization {de-

fault = false}

TpaCutOEM Library 16

• cut optimizer uses the edge information to apply a possible reduction in the size of the rectangle,

as obtained from the cutting pattern. The reduction is applicable on each side of the rectangle, with

verification of corresponding information (ThickEdge >0.0, BoolEdge =true)

• edge-related fields will be usable in the edgebanding station, after a cut optimization

• edge-related fields are only meaningful if EnableRectEdge=true.

- string Param1, Param2…, Param15: 15 generic parameters that do not affect optimization {default =

“”}

• fields are available for assigning management or generally technological information. Examples:

information on the order (customer, order number, notes), added information on the material.

3.4.2. ONESHEET

General assignment of a sheet. The structure exposes methods for initializing fields to default values.

- int ID: numerical identifier of the sheet (univocal, strictly positive) {default = 0}

- bool Enable: enables the use of the sheet (false = does not place the sheet) {default = true}

- string Label: descriptive name of the sheet (can be =""; maximum length 50 characters) {default

=""}

- bool Scrap: identifies the sheet as retrieved (e.g., previously optimized sheet scrap) {default =

false}

• sheets of this type may have precedence of use

• field application is assigned by the OrderBeforeScrap setting

- double Length: length (>= 0.0) {default = 0.0}

- double Height: height (>= 0.0) {default = 0.0}

• values are in units of: Unit

- double Thickness: thickness (>= 0.0) {default = 0.0}.

• assign the field with differentiated values if you need to match the corresponding rectangle field

• values are in units of: Unit

- int N: available quantity (>= 0) {default = 0; maximum value = 100}

- string Material: material {default = “”}

• assign the field with differentiated values if you need to match the corresponding rectangle field

• the real meaning of the field lies with the external application

- int Grain: grain direction (0 = none; 1 = x = horizontal; 2 = y = vertical) {default = 0}

• assign the field with a value of 1 or 2 if you need to match the corresponding rectangle field

- int Priority: priority of use (>= 0) {default = 0}

• lower number priority sheets have priority of use

• sheets with priority = 0 will be used last

- double Cost: sheet cost per unit area {default = 0}

• information unit shall be assigned by the client as its use is delegated to the client

• typical units can be: €/sq.m. (euro/square meter), $/ft2 (dollar/square foot)

- double BorderBottom, BorderTop, BorderRight, BorderLeft: sheet margins {default = 0}

• values are in units of: Unit

3.5. DEFINITION OF FUNCTIONS

Let us examine here how to assign all the functions of TPA_C: with reference to the functions, the wording of

settings is also used.

When initializing TPA_C, all settings are assigned to the default values, indicated below with locution {default

= …}.

In order to provide a more comprehensive framework, assignments are divided into four groupings:

• General functions: assignments of generic use

TpaCutOEM Library 17

• Functions corresponding to general settings of cut optimization: assignments that mean general cus-

tomizations of projects and cut optimization. Information of this kind usually remains unchanged and is

not serialized into a file corresponding to a project

• Functions related to general assignments of a cutting project: assignments that mean specific assign-

ments of a project. Information of this kind is usually serialized into a file corresponding to a project.

3.5.1. GENERAL FUNCTIONS

3.5.1.1. VERSION
String type property that returns the version of the library.

The string reports the library's major, minor, build, and revision number.

3.5.1.2. LASTERROR
CutError type property that returns the last error encountered. The value is updated in all procedures that

can diagnose an anomalous situation.

3.5.1.3. ERRORMESSAGE
The function returns the assigned message for the error indicated.

string ErrorMessage (CutError Error)

Arguments

• Error: enumeration value

Return value

If it is Error = CutError.ErrorNone, the function return is "" (empty string).

Internal messages are assigned in English.

3.5.2. FUNCTIONS CORRESPONDING TO GENERAL SETTINGS OF CUT OPTIMIZATION

This information does not change as the project changes: it concerns settings usually attributable to general operation options of an appli-

cation.

3.5.2.1. NUMBERCUSTOM
Integer type property that assigns/returns the number of general settings of the project {default =

MAX_CUSTOM_SETTINGS, min=0, max = MAX_CUSTOM_SETTINGS}.

The value can limit the number of general settings of the project that TPA_C manages (for example: while

reading and/or recording the project to and from file).

3.5.2.2. NUMBERRECTPARAM
Integer type property that assigns/returns the number of parameters in each OneRect {default =

MAX_ROW_PARAMS, min=0, max = MAX_ROW_PARAMS}.

The value can limit the number of general settings of the project that TPA_C manages (for example: while

reading and/or recording the project to and from file).

3.5.2.3. ENABLERECTEDGE
Boolean type property that assigns/returns the activation to assign the edges of rectangles {default = true}.

In particular:

- true: the optimizer can use a small rectangle, due to the application of edges

- false: the fields related to the edges of a rectangle are not serialized (on project files).

3.5.2.4. ORDERSHEETDIM
Boolean type property that assigns/returns the enablement to sort sheets by size {default = false}.

Value =true: enables the optimization to apply sheet sorting by decreasing area.

TpaCutOEM Library 18

3.5.2.5. ORDERBEFORESCRAP

Boolean type property that assigns/returns the enablement to use scrap-marked sheets first {default = false}.

Value =true: enables optimization to use the scrap sheets before the others.

3.5.2.6. ORDERSTRIPS
Boolean type property that assigns/returns the enablement to sort the strips in a cutting pattern {default =

true}.

Please note that a strip corresponds to a portion of the panel obtained by longitudinal cut of level 1.

The figure shows the same cutting pattern as obtained in both cases:

 false: (left) the strips are reported in calculation order

 true: (right) the order of the strips is such as to respect:

o increasing values of wasted material inside the strip

o increasing values by strip height (equal waste).

3.5.2.7. ORDERSUBSTRIPS
Boolean type property that assigns/returns the enablement to sort pieces within a strip or strip portion of a

cutting pattern {default = true}.

The figure shows the same strip as obtained in both cases:

TpaCutOEM Library 19

 false: (left) the strip cuts are listed in order of calculation

 true: (right) the order in each portion of the strip is such as to respect

o increasing values of wasted material within the portion.

3.5.3. FUNCTIONS RELATED TO GENERAL ASSIGNMENTS OF A PROJECT

This information can change as the project changes.

3.5.3.1. UNIT
 Integer type property that returns the unit assigned with function {default = 0}.

3.5.3.2. CUTTERDIAMETER
 Double type property that assigns/returns the diameter of the cutting tool {Unit: Unit; default = 0.0; valid-

ity range: >= 0.0}.

The placement between rectangles applies a minimum spacing matching the set value.

3.5.3.3. DIRECTION
Short type property that assigns/returns the direction of the first cutting level applied to sheets {default = 0;

validity range: 0/1/2}:

• 0 = horizontal direction

• 1 = vertical direction

• 2 = direction determined by optimizer.

In case of value 2, the optimizer will always search for the optimal cutting pattern for each sheet type. In this

case: as a result of the optimization, some sheets may have the first cut direction that matches the length

dimension and others may have the first cut direction that matches the height dimension.

3.5.3.4. CORNER
Short type property that assigns/returns the starting vertex for placements, among valid values {default =

0; validity range: 0/3}

• 0 = left-bottom

• 1 = left-top

• 2 = right-bottom

• 3 = right-top.

3.5.3.5. MAXCUTLEVELS
Integer type property that assigns/returns the maximum cutting level that can be used in optimization {de-

fault = MAX_CUT_LEVELS; min = 1; max = MAX_CUT_LEVELS}.

Value 1 corresponds to the possibility to perform only one cutting level:

TpaCutOEM Library 20

• Level 0 (head cut) in case of optimization in vertical direction

 requires rectangles with the same height as the raw panel

• Level 1 (longitudinal cut) in case of optimization in horizontal direction

 requires rectangles with the same length as the raw panel.

3.5.3.6. TENSIONGAP
Double type property that assigns/returns an additional distance between the first level cuts in order to re-

lieve the sheet tension {Unit: Unit; default = 0.0; validity range: >= 0.0}.

3.5.3.7. PRECUT
Double type property that assigns/returns a trim added to all zero level cuts {Unit: Unit; default = 0.0; va-

lidity range: >= 0.0}.

3.5.3.8. LONGCUT
Double type property that assigns/returns a trim added to all first level cuts {Unit: Unit; default = 0.0; va-

lidity range: >= 0.0}.

3.5.3.9. TRANSVCUT
Double type property that assigns/returns a trim added to all second level cuts {Unit: Unit; default = 0.0;

validity range: >= 0.0}.

3.5.3.10. ZCUT
Double type property that assigns/returns a trim added to all third level cuts {Unit: Unit; default = 0.0; va-

lidity range: >= 0.0}.

3.5.3.11. CUSTOM1, CUSTOM2, …, CUSTOM10
 String type properties that assign/return generic project information that does not affect the optimization

process {default = “”; maximum number of properties = NumberCustom; maximum length of a parameter =

MAX_LL_SETTINGS}.

3.5.3.12. CLEARALL
The function clears the project lists (rectangles, sheets) and any calculated solution.

bool ClearAll ()

Return value

true if result is positive.

Currently no situation can determine return as false.

3.6. DEFINITION OF RECTANGLES

3.6.1. ADDRCT

The feature adds a rectangle to the list.

bool AddRct (OneRect Item)

Arguments

• Item: structure of rectangle assignment

Return value

true if result is positive, false if the rectangle has not been inserted

Notes

A false return corresponds to one of these error situations:

TpaCutOEM Library 21

• the list of rectangles is already at the maximum allowed (500 elements)

• the rectangle has an invalid identifier assigned (Item.ID must be strictly positive)

• a rectangle with Item.ID numerical identifier is already assigned

• the rectangle has invalid dimensions, or invalid edge dimensions. Specifically: subtracting thickness of

the edges from the rectangle dimensions would reduce one or both dimensions to value < 1.0 mm.

3.6.2. CLEARRCT

The function clears the list of rectangles.

bool ClearRct ()

Return value

True if the list was deleted correctly

3.6.3. COUNTRECT

Int type property gets the number of rectangles in the list.

3.6.4. READRECT

The function searches for a rectangle matching the specified ID.

CutError ReadRect (int ItemID, ref OneRect Item)

Arguments

• ItemId: rectangle identifier (> 0)

• Item: structure of rectangle assignment

Return value

CutError.ErrorNone if result is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorUnexpected) either an invalid identifier is assigned (ItemID must be strictly positive) or

no rectangle with an ItemID numerical identifier is assigned.

3.6.5. READRECTINDEX

The function searches for a rectangle matching the specified index.

CutError ReadRectIndex (int Index, ref OneRect Item)

Arguments

• Index: index (zero base) on the list of rectangles (>= 0)

• Item: structure of rectangle assignment

Return value

CutError.ErrorNone if result is positive

Notes

The primary use of the function is for acquiring rectangles after executing the LoadProject function.

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorUnexpected) an invalid index is assigned.

3.7. DEFINITION OF SHEETS

TpaCutOEM Library 22

3.7.1. ADDSHEET

The feature adds a sheet to the list.

bool AddSheet (OneSheet Item)

Argument

• Item: structure of sheet assignment

Return value

true if result is positive

Notes

A return other than true corresponds to one of these error situations:

• The sheet list is already at the maximum allowed (100 elements) or the quantity requested in the

structure exceeds the maximum allowed (999)

• The sheet has an invalid identifier assigned (Item.ID must be strictly positive)

• A sheet with Item.ID numerical identification is already assigned

• The sheet assigns invalid margins. Specifically: subtracting margins from the sheet dimensions reduces

one or both dimensions to value < 1.0 mm

3.7.2. CLEARSHEET

The function clears the list of sheets.

bool ClearSheet ()

Return value

true if the result is positive

3.7.3. COUNTSHEET

Int type property gets the number of sheets in the list.

3.7.4. READSHEET

The function searches for a sheet matching the specified ID.

CutError ReadSheet (int ItemID, ref OneSheet Item)

Arguments

• ItemId: sheet identifier (> 0)

• Item: structure of sheet assignment

Return value

CutError.ErrorNone if the resut is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorUnexpected) either an invalid identifier is assigned (ItemID must be strictly positive) or

a sheet with an ItemID numerical identifier is not assigned

3.7.5. READSHEETINDEX

The function searches for a sheet matching the specified index.

CutError ReadSheetIndex (int Index, ref OneSheet Item)

Arguments

• Index: index (zero base) on the sheet list (>= 0)

• Item: structure of sheet assignment

TpaCutOEM Library 23

Return value

CutError.ErrorNone if the result is positive.

Notes

The primary use of the function is for acquiring sheets after running the LoadProject feature.

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorUnexpected) an invalid index is assigned.

3.8. CUTTING SOLUTION

3.8.1. COMPUTE

The function starts the optimization process

bool Compute ()

Return value

true if the result is positive.

Notes

In case of false return, you can query the LastError property to see what prevented the optimization:

• (CutError.ErrorKey) the key presence and status check failed

• (CutError.ErrorRectEmpty) the list of rectangles is empty or does not assign enabled items

• (CutError.ErrorSheetsEmpty) the list of sheets is empty or does not assign enabled items

• (CutError.ErrorNoMatch) the list of parts and sheets do not have common matching groups

At start-up, the function:

• carries out preliminary checks (mentioned above)

• checks lists of rectangles and sheets.

If the execution of the listed checks leads to an error situation, the function still returns without running any

optimization.

3.9. OPTIMIZATION RESULTS

All properties and features listed here fail if a valid optimization is not computed.

3.9.1. NUMBEROFSOLUTIONS

Integer type property that returns the total number of computed solutions.

The return value is:

• 0: no solution is calculated

• >0: number of solutions calculated

3.9.2. SELECTSOLUTION

Integer type property that assigns/returns the current solution number.

The return value is:

• -1: no solution is calculated

• >=0: the current solution matches a computed one with a Compute() function call

Under assignment:

• the property allows you to confirm or change the current solution

TpaCutOEM Library 24

• no assignment is made if the value is invalid.

3.9.3. SOLUTIONSHEETS

Integer type property that returns the number of sheets of the current solution.

The return value is:

• 0: the solution is empty or does not exist

• >0: the solution is valid

A solution sheet is also referred to as: cutting pattern.

The returned value does not take into account any repeated sheets.

3.9.4. GETSHEETID

The function returns the ID of a sheet given its index in the current solution.

Int GetSheetID (int idx)

Arguments

• idx: sheet index (>= 0)

Notes

The function returns 0 in case of invalid index or solution.

3.9.5. NUMBEROFREPETITIONS

The function returns how many times a particular cutting pattern is repeated in the current solution.

int NumberOfRepetitions (int idx)

Arguments

• idx: sheet index (>= 0)

Notes

The value of the property is significant after running an optimization.

The function returns 0 if there is an invalid index or solution.

The feature returns 1 if the cut scheme is assigned only once (no patterns).

3.9.6. USEDSHEETS

The function reads the number of sheets of the current solution (sheets with placements).

int UsedSheets (int ID_Sheet)

Arguments

• ID_Sheet: sheet identifier (> 0)

Notes

The function returns the number of sheets of the current solution or sheet type:

ID_Sheet

=0 gets the total number of sheets calculated for the solution

>0 gets the number of sheets of type (ID_Sheet) calculated for the solution

3.9.7. USEDRECTS

The feature reads the number of placements in a sheet of the current solution or the entire current solution,

with the option to match only one type of rectangle.

TpaCutOEM Library 25

int UsedRects (int Index, int ID_Part)

Arguments

• Index: zero-based index of the solution sheet

• ID_Part: rectangle identifier (> 0)

Notes

The function reads the number of placements corresponding to the assigned arguments:

Index ID_Part

-1 0 gets the total number of placements of the solution

-1 >0 gets the number of placements matching the rectangle (ID_Part) in all

the solution sheets

>=0 0 gets the total number of placements in the index sheet (Index) of the so-

lution

>=0 >0 gets the total number of placements matching the rectangle (ID_Part) in

the index sheet (Index)

In cases of operation with negative Index (-1), the return value takes into account the same repeated sheets.

In cases of operation with Index >= 0, the return value counts the placements of a single sheet, without tak-

ing into account any repetitions of the sheet itself.

3.9.8. FITNESSSHEET

The function returns the efficiency information of a sheet of the current solution.

double FitnessSheet (int idx)

Arguments

• idx: sheet index (>= 0)

Notes

The value of the property is significant after running an optimization.

The overall efficiency is assessed as a % of the ratio of the area used for placements to the total area of the

sheets used. If the solution generates multiple sheets, the efficiency evaluation of the last sheet can appro-

priately limit the useful area for placements

The function returns fitness as a percentage of one sheet or all current solution:

idx

= -1 gets the fitness of the whole solution (takes repetitions into account)

>=0 gets the fitness of the idx index sheet

3.9.9. READRESOLRECT

The function returns information about a placement on a sheet of the current solution

int ReadResolRect (int idx, int idxrct, ref double qx, ref double qy, ref bool rotate)

Arguments

- idx: index (zero base) of the solution sheet

- idxrct: index (zero base) of the placement on the solution sheet

- qx: x coordinate of the lower left corner of the rectangle

- qy: y coordinate of the lower left corner of the rectangle

- rotate: indicates whether the rectangle is rotated (true = rotated)

Return value

The identification of the rectangle whose data was read in case of a positive result, 0 otherwise.

Notes

TpaCutOEM Library 26

In case of return 0, you can query the LastError property to find out the error:

• (CutError.ErrorKey) the key presence and status check failed

• (CutError.ErrorNoSolutions) no solution was found

• (CutError.ErrorUnexpected) one or both indices (idx, idxrct) are invalid

3.9.10. NUMBEROFCUTS

The function returns the number of cuts calculated for a sheet of the current solution matching the specified

index

int NumberOfCuts(int idx)

Arguments

• idx: index (zero base) of the solution sheet

Return value

The number of cuts in a cutting pattern. The function returns 0 in case of invalid index or solution.

3.9.11. READRESOLCUT

The function returns information about a cut on a sheet of the current solution

int ReadResolCut (int idx, int idxcut, ref double xStart, ref double yStart, ref double xEnd, ref

double yEnd, ref int orientation, ref double thickness)

Arguments

- idx: index (zero base) of the solution sheet

- idxcut: index (zero base) of cut on solution sheet

- xStart: x coordinate of the start point of the cut

- yStart: y coordinate of the start point of the cut

- xEnd: x coordinate of the end point of the cut

- yEnd: y coordinate of the end point of the cut

- orientation: cut orientation (0 = vertical, 1 = horizontal)

- thickness: cut thickness

Return value

The cutting level whose data was read (-1 in case of error).

Notes

In case of return -1, you can query the LastError property to find out the error:

• (CutError.ErrorKey) the key presence and status check failed

• (CutError.ErrorNoSolutions) no solution was found

• (CutError.ErrorUnexpected) one or both indices (idx, idxcut) are invalid

The function return indicates the cutting level and is from 0 to 6.

The coordinates of the cut are always referred to the pure Cartesian system (origin at the left-bottom corner).

The thickness argument can assign thickness different from the thickness of the cutting tool:

• bottom, if the cut is partly outside the useful area of material

• top, if the cut is to be repeated (for example: for adding a trim).

The cut sequence follows the division of the sheet into strips and the strips into further parts: the sequence

respects the order in which the cuts are arranged on the raw panel, starting from the vertex used for the

placements towards the opposite vertex.

No cuts are assigned to separate the sheet edges.

Here is an example of a cutting pattern obtained with optimization in horizontal direction:

• the vertex used for placements is left-bottom

• there are 2 longitudinal cuts (colour cuts: red)

• the maximum cutting level is 3 (Z cuts).

The returned cut sequence corresponds to the sequence on the right of the image.

TpaCutOEM Library 27

Rulers on the sides of the sheet help to locate the cuts graphically.

The raw sheet has the following dimensions: 800 x 1000 mm.

Longitudinal cut: [0;500] →[800;500]
Cross cut:[400;0] →[400;500]
Cross cut:[490;0] →[490;500]

Z Cut: [415;400] →[490;400]
Z Cut: [415;497] →[490;497]

Cross cut:[705;0] →[705;500]
Z Cut: [505;150] →[705;150]
Z Cut: [505;315] →[705;315]
Z Cut: [505;480] →[705;480]

Cross cut: … not assigned
Z Cut: [720;333] →[800;333]
Z Cut: [720;459] →[800;459]

Longitudinal cut: [0;995] →[800;995]
Cross cut:[640;515] →[640;995]
Cross cut:[735;515] →[735;995]

Z Cut: [655;848] →[735;848]
Z Cut: [655;974] →[735;974]

The last cross cut reported for the first longitudinal cut is indicated as “not assigned” as it is completely out-

side the right edge of the sheet.

The longitudinal cut at the top of the sheet is clearly less thick than the first one, as it overlaps with the top

edge of the sheet.

3.9.12. CUTLINEAR

The function returns the linear development corresponding to the calculated cuts for a sheet of the current

solution at the specified index

double CutLinear(int idx)

Arguments

• Idx: index (zero base) of the solution sheet

Return value

The function returns 0 in case of invalid index or solution; otherwise: the overall linear development of the

cuts.

3.9.13. CUTAREA

The function returns the area corresponding to the calculated cuts for a sheet of the current solution at the

specified index

double CutArea(int idx)

Arguments

• idx: index (zero base) of the solution sheet

Return value

The function returns 0 in case of invalid index or solution; otherwise: the area occupied by the cuts.

Area is calculated by applying the thickness of the cuts, as returned by ReadResolCut function.

3.9.14. MARGINAREA

TpaCutOEM Library 28

The function returns the area corresponding to the assigned margins for a sheet of the current solution at the

specified index

double MarginArea(int idx)

Arguments

• idx: index (zero base) of the solution sheet

Return value

The function returns 0 in case of invalid index or solution or null assigned margins; otherwise: the area corre-

sponding to the margins.

Margins are assigned in the OneSheet structure of the sheet.

3.9.15. GETWASTE

The function returns the unused area for a sheet of the current solution at the specified index

double GetWaste (int idx)

Arguments

• idx: index (zero base) of the solution sheet

Return value

The function returns 0 in case of an invalid index or solution; otherwise: The unused area of the sheet.

The unused area of a sheet shall be calculated by subtracting from the original area of the sheet:

• the area corresponding to the margins

• the area corresponding to the cut rectangles

• the area of the cuts.

3.9.16. ESTIMATED TIME

It assigns the time estimated by the client to execute the cutting pattern of the current solution at the speci-

fied index

public bool EstimatedTime(int idx, long valueH, long valueM, long valueS)

Arguments

• idx: sheet index. If -1: assigns the total time of the solution.

• ValueH: number of hours (>=0)

• ValueM: number of minutes (>=0)

• ValueS: number of seconds (>=0)

Return value

true if the result is positive.

Notes

A return other than true corresponds to one of these error situations:

• no solution calculated

• invalid index (idx)

• negative values for time values.

The allocation of time in (hours, minutes, seconds) allows for greater flexibility: the total time in seconds, for

example, can be allocated.

The function allows to assign information that can only be determined on the basis of assessments depending

on the specific application.

3.9.17. ESTIMATED COST

It assigns the cost estimated by the client to execute the cutting pattern of the current solution at the specified

index

TpaCutOEM Library 29

public bool EstimatedCost(int idx, double value)

Arguments

• idx: sheet index. If -1: assigns the total cost of the solution

• value: cost (of the sheet or solution)

Return value

true if the result is positive.

Notes

A return other than true corresponds to one of these error situations:

• no solution computed

• invalid index (idx)

• negative value for the cost

The function allows to assign information that can only be determined on the basis of assessments depending

on the specific application.

3.9.18. EXPORT

The function saves the current solution in one or more files (XML format).

CutError Export (string pathName)

Arguments

• pathName: File path

Return value

CutError.ErrorNone if the result is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of these error situations:

• (CutError.ErrorNoSolutions) no solution has been computed

• (CutError.ErrorKey) invalid license or key not found

• (CutError.ErrorIOfile) there was an error accessing the file to be written

• (CutError.ErrorUnexpected) an unexpected error has occurred.

The saved files can be interpreted by an external application as an alternative to querying exposed functions.

In particular:

• the files have “XML” format: any extension “.XML” is added to pathName, if necessary

• one file is saved for each calculated cutting scheme

• each file includes information about any repetition of the cutting pattern

• the first file is saved as pathName+”_001”

• the second file is saved as pathName+”_002”

• until cutting patterns are exhausted

• existing files are overwritten.

FILE STRUCTURE CORRESPONDING TO A CUTTING PATTERN

The master node is the MAIN node and contains general information distributed in nested elements:

<MAIN>

 <GENERALSETTINGS Info1="Client ABC" Info2="ABC12345" />

 <TECHSETTINGS Unit="0" Direction="0" Corner="0" MaxCutLevel="3" />

 <DIM Code="3.0" L="800.0" H="1000.0" T="0.0" G="N" Scrap="0" Priority="0" />

 <DIMTRIMS BladeThickness="15.0" PreCut="0.0" LongCut="0.0" TransvCut="0.0" ZCut="0.0" />

 <DATA Rep="2" />

 <PIECESLIST>

 <PIECE Code="1" L="640.0" H="480.0" T="0.0" Used="1" Rotation="1" G="N" Priority="0" …/>

 <PIECE Code="2" L="400.0" H="500.0" T="0.0" Used="1" Rotation="1" G="N" Priority="1" … />

 …

 </PIECESLIST>

 <DRAW>

 …

 </DRAW>

TpaCutOEM Library 30

</MAIN>

<GENERALSETTINGS> NODE

provides general project information (see: Custom1, Custom2, …, Custom10)

• attributes: Info1,… , Info10

<TECHSETTINGS> NODE

lists some project assignments

• Unit attribute: unit of measure of the project (see: Unit)

• Direction attribute: forward direction for placements (see: Direction)

• Corner attribute: starting vertex for placements (see: Corner)

• MaxCutLevel attribute: the maximum cutting level that can be used in optimization (see: MaxCut-

Levels)

<DIM> NODE

provides general sheet information (see structure: OneSheet)

• Code attribute: ID field of structure

• L attribute: Length field of structure

• H attribute: Height field of structure

• T attribute: Thickness field of structure

• Descr attribute: Label field of structure

• Mat attribute: Material field of structure

• G attribute: Grain field of structure (values: “N”=no grain, “X”=x grain, “Y”=y grain)

• Scrap attribute: Scrap field of structure

• Priority attribute: Priority field of structure

• TopMargin attribute: BorderTop field of structure

• BottomMargin attribute: BorderBottom field of structure

• RightMargin Attribute: BorderRight field of structure

• LeftMargin Attribute: BorderLeft field of structure

• Cost Attribute: Cost field of structure

<DIMTRIMS> NODE

reports the assignments of the project trims

• BladeThickness attribute: thickness of the cutting tool (see: CutterDiameter)

• PreCut attribute: trim added to all head cuts (see: PreCut)

• LongCut attribute: trim added to longitudinal cuts (see: LongCut)

• TransvCut attribute: trim added to cross cuts (see: TransvCut)

• ZCut attribute: trim added to Z cuts (see: Zcut)

• LongCutTFC attribute: additional distance between first level cuts in order to relieve sheet tension (see:

TensionGap)

<DATA> NODE

provides general information about the cutting pattern

• Rep attribute: sheet repetition

• Cost attribute: estimated cost of execution (as assigned by the client)

• Time attribute: estimated time of execution (unit: seconds)- (as assigned by the client)

<PIECESLIST> NODE

lists the rectangles that are cut by the current cutting pattern.

Each one has a <PIECE> node, with the general information about the rectangle (see structure: On-

eRect):

TpaCutOEM Library 31

• Code attribute: ID field of structure

• L attribute: Length field of structure

• H attribute: Height field of structure

• T attribute: Thickness field of structure

• Descr attribute: Label field of structure

• Mat attribute: Material field of structure

• G attribute: Grain field of structure (values: “N”=no grain, “X”=x grain, “Y”=y grain)

• Rotation attribute: Rotate field of structure

• Priority attribute: Priority field of structure

• MatEdge1, ThickEdge1, EnableEdge1 attributes: MatEdge1, ThickEdge1, BoolEdge1 fields of structure

• MatEdge2, ThickEdge2, EnableEdge2 attributes: MatEdge2, ThickEdge2, BoolEdge2 fields of structure

• MatEdge3, ThickEdge3, EnableEdge3 attributes: MatEdge3, ThickEdge3, BoolEdge3 fields of structure

• MatEdge4, ThickEdge4, EnableEdge4 attributes: MatEdge4, ThickEdge4, BoolEdge4 fields of structure

• Param1,…,Param15 attributes: fields (Param1,…,Param15) of structure

in addition to:

• Used attribute: number of placements in the current sheet

<DRAW> NODE

returns the cutting pattern corresponding to the sheet, but in a different way than previously seen.

Below is the cutting pattern corresponding to the example in paragraph ReadResolCut

 <DRAW>

 <PANEL ID="01" REP="1" L="800.00" H="1000.000">

 <STRIPE ID="0101" REP="1" L="800.000" H="500.000">

 <ELEMENT ID="010101" REP="1" L="400.000" H="500.000">

 <LABEL Code="2" Rep="1" Rotated="0" />

 </ELEMENT>

 < ELEMENT ID="010102" REP="1" L="75.000" H="500.000">

 <ELEMENTZ ID="01010201" REP="1" L="75.000" H="400.000">

 <LABEL Code="18" Rep="1" Rotated="1" />

 </ELEMENTZ>

 <ELEMENTZ ID="01010202" REP="1" L="75.000" H="82.000">

 <LABEL Code="8" Rep="1" Rotated="1" />

 </ELEMENTZ>

 </ELEMENT>

 <ELEMENT ID="010103" REP="1" L="200.000" H="500.000">

 <ELEMENTZ ID="01010301" REP="1" L="200.000" H="150.000">

 <LABEL Code="36" Rep="1" Rotated="0" />

 </ELEMENTZ>

 <ELEMENTZ ID="01010302" REP="1" L="200.000" H="150.000">

 <LABEL Code="36" Rep="1" Rotated="0" />

 </ELEMENTZ>

 <ELEMENTZ ID="01010303" REP="1" L="200.000" H="150.000">

 <LABEL Code="36" Rep="1" Rotated="0" />

 </ELEMENTZ>

 </ELEMENT>

 <ELEMENT ID="010104" REP="1" L="80.000" H="500.000">

 <ELEMENTZ ID="01010401" REP="1" L="80.000" H="333.000">

 <LABEL Code="20" Rep="1" Rotated="0" />

 </ELEMENTZ>

 <ELEMENTZ ID="01010402" REP="1" L="80.000" H="111.000">

 <LABEL Code="21" Rep="1" Rotated="0" />

 </ELEMENTZ>

 </ELEMENT>

 </STRIPE>

 <STRIPE ID="0102" REP="1" L="800.000" H="480.000">

 <ELEMENT ID="010201" REP="1" L="640.000" H="480.000">

 <LABEL Code="1" Rep="1" Rotated="0" />

 </ELEMENT>

 <ELEMENT ID="010202" REP="1" L="80.000" H="480.000">

 <ELEMENTZ ID="01020201" REP="1" L="80.000" H="333.000">

 <LABEL Code="20" Rep="1" Rotated="0" />

 </ELEMENTZ>

 <ELEMENTZ ID="01020202" REP="1" L="80.000" H="111.000">

 <LABEL Code="21" Rep="1" Rotated="0" />

TpaCutOEM Library 32

 </ELEMENTZ>

 </ELEMENT>

 </STRIPE>

 </PANEL>

 </DRAW>

The figure highlights the meaning given to each individual node in the “xml” scheme:

<PANEL> NODE

Given the raw panel, it can be separated by head cuts (cuts in vertical direction, covering the height of

the raw panel) into several panels: as already mentioned, this is the case of an optimized panel by apply-

ing vertical direction.

Each element thus obtained corresponds to a section of <PANEL> type: in case of panel optimized by

applying horizontal direction, the section is always one (as in the example).

The order of the <PANEL> type sections follow the order in which they are placed on the raw panel,

starting from the vertex used for the placements towards the opposite vertex (in the example: from left-

bottom vertex to right-top vertex).

Node attributes are common to all subsequent node types, both in name and meaning.

<PANEL ID="01" REP="1" L="800.00" H="1000.000">

• ID attribute: univocal identifier

• REP attribute: element repetition (default= 1)

• L attribute: horizontal dimension of the element (net of cuts)

• H attribute: vertical dimension of the element (net of cuts)

In our example: the element has the same dimensions as the raw panel (800 x 1000 mm).

<STRIPE> NODE

Nodes inserted inside a <PANEL> node, describing the strips generated by the longitudinal cuts (cuts in

the horizontal direction, covering the length of the element to which it belongs <PANEL>). The order of

TpaCutOEM Library 33

the <STRIPE> type sections follows the order in which they are arranged on the <PANEL> element, in

accordance with the direction imposed by the vertex used for placements (in the example: from bottom

to top).

The node attributes are the same as those examined for the parent node.
In this example, 2 <STRIPE> sections are assigned.

 <DRAW>

 <PANEL ID="01" REP="1" L="800.00" H="1000.000">

 <STRIPE ID="0101" REP="1" L="800.000" H="500.000">

 …

 </STRIPE>

 <STRIPE ID="0102" REP="1" L="800.000" H="480.000">

 …

 </STRIPE>

 </PANEL>

 </DRAW>

<ELEMENT> NODE

Nodes inserted within a <STRIPE> node, describing the elements generated by the cross cuts (cuts in

the vertical direction, covering the height of the element to which it belongs <STRIPE>). The order of

the <ELEMENT> type sections follows the order in which they are placed on the <STRIPE> element, in

accordance with the direction imposed by the vertex used for placements (in the example: from left to

right).

Node attributes are the same as those examined for the parent node.
In this example, the following are assigned:

 4 sections for the first strip
 2 sections for the second strip.

<PANEL ID="01" REP="1" L="800.00" H="1000.000">

 <STRIPE ID="0101" REP="1" L="800.000" H="500.000">

 <ELEMENT ID="010101" REP="1" L="400.000" H="500.000">

 <LABEL Code="2" Rep="1" Rotated="0" />

 </ELEMENT>

 <ELEMENT ID="010102" REP="1" L="75.000" H="500.000">

 …

 </ELEMENT>

 <ELEMENT ID="010103" REP="1" L="200.000" H="500.000">

 …

 </ELEMENT>

 <ELEMENT ID="010104" REP="1" L="80.000" H="500.000">

 …

 </ELEMENT>

 </STRIPE>

 <STRIPE ID="0102" REP="1" L="800.000" H="480.000">

 <ELEMENT ID="010201" REP="1" L="640.000" H="480.000">

 …

 </ELEMENT>

 <ELEMENT ID="010202" REP="1" L="80.000" H="480.000">

 …

 </ELEMENT>

 </STRIPE>

 </PANEL>

<ELEMENTZ> NODE

Nodes inserted within an <ELEMENT> node, describing the elements generated by Z cuts (cuts in the

horizontal direction, covering the length of the <ELEMENT> item to which it belongs). The order of <EL-

EMENTZ> type sections follows the order in which they are placed on the <ELEMENT> item, in accord-

ance with the direction imposed by the vertex used for placements (in the example: from bottom to top).

<ELEMENTW> NODE

TpaCutOEM Library 34

Nodes inserted inside an <ELEMENTZ> node, describing the elements generated by W cuts (cuts in the

vertical direction, covering the height of <ELEMENTZ> item to which it belongs). The order of <ELE-

MENTW> type sections follows the order in which they are placed on <ELEMENTZ> item, in accordance

with the direction imposed by the vertex used for placements (in the example: from left to right).

In this example, no such nodes are assigned.

<ELEMENT5> NODE

Nodes inserted inside an <ELEMENTW> node, describing the elements generated by cuts #5 (cuts in

the horizontal direction, covering the length of <ELEMENTW> item to which it belongs). The order of

<ELEMENT5> type sections follows the order in which they are placed on <ELEMENTW> item, in ac-

cordance with the direction imposed by the vertex used for placements (in the example: from bottom to

top).

In this example, no such nodes are assigned.

<ELEMENT6> NODE

Nodes inserted inside an <ELEMENT5> node, describing the elements generated by cuts #6 (cuts in the

vertical direction, covering the height of <ELEMENT5> item to which it belongs). The order of <ELE-

MENT6> type sections follows the order in which they are placed on the element <ELEMENT6>, in ac-

cordance with the direction imposed by the vertex used for placements (in the example: from left to

right).

In this example, no such nodes are assigned.

<LABEL> NODE

A node of this type can be inserted inside each node of type (PANEL, STRIPE, ELEMENT, ELEMENTZ, ELE-
MENTW, ELEMENT5, ELEMENT6), by definition of the rectangle that is placed in the corresponding ele-
ment. A <LABEL> node terminates a cutting branch.

<PANEL ID="01" REP="1" L="800.00" H="1000.000">

 < STRIPE ID="0101" REP="1" L="800.000" H="500.000">

 <ELEMENT ID="010101" REP="1" L="400.000" H="500.000">

 <LABEL Code="2" Rep="1" Rotated="0" />

 </ELEMENT>

 …

 </STRIPE>

 < STRIPE ID="0102" REP="1" L="800.000" H="480.000">

 …

 </STRIPE>

 </PANEL>

The node assigns the following attributes:
• Code attribute: rectangle identifier (ID field in OneRect structure)

• REP attribute: element repetition (default= 1)

• Rotated attribute: indicates if the rectangle is placed rotated.

3.10. PROJECT SERIALIZATION FUNCTIONS

Functions handle project serialization to/from files.

3.10.1. SAVEPROJECT

The function saves the list assignments of rectangles and sheets to files (XML format).

CutError SaveProject (string pathName, bool bMode)

Arguments

• pathName: file path

TpaCutOEM Library 35

• bMode: true requires saving general project settings

Return value

CutError.ErrorNone if result is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorIOFile) an error occurred in accessing the file to be written.

Use bMode=true to save general project settings as well.

3.10.2. LOADPROJECT

The function reads the list assignments of rectangles and sheets from files (XML format).

CutError LoadProject (string pathName, bool bMode)

Arguments

• pathName: file path

• bMode: true enables reading general project settings

Return value

CutError.ErrorNone if result is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of the error situations:

• (CutError.ErrorIOFile) Error in accessing the file.

Use bMode=true to also read general project settings: settings that are not read by the file are initialized to

default values.

If bMode=false: the settings remain unchanged.

Executing the function does not change the general optimization settings.

3.10.3. IMPORTPROJECT

The function imports the assignments of sheets and rectangles lists from CSV file

CutError ImportProject (string pathName, string stFormatSheet, string stFormatRect)

Arguments

• pathName: file path

• stFormatSheet: formatting string of sheet assignment line (in CSV file)

• stFormatRect: formatting string of rectangle assignment line (in CSV file)

Return value

CutError.ErrorNone if result is positive.

Notes

A return other than CutError.ErrorNone corresponds to one of these error situations:

• (CutError.ErrorIOFile) Error in accessing the file

• (CutError.ErrorFileNotValid) data read is inconsistent

The function initializes the current project by assigning lists of sheets and rectangles from CSV file and leaving

the remaining general project settings unchanged.

A CSV file is a text file used for assigning a data table. Each row of the file matches a table row and is in turn

subdivided into fields (individual columns) by means of a separator character (comma and semicolon are recog-

nized as valid).

The function assigns two strings to format the assignment lines of each item type, which are used if the same

CSV file does not assign any more.

TpaCutOEM Library 36

Let us see an example of CSV file:

***panel;d;l;h;n;m;g;p
***part;d;l;h;n;x;m;g;p;r

element formatting lines
• optional
• not necessarily both present
• recognized heading for lines is highlighted:

o “***panel;” for sheets
o “***part;” for rectangles

panel;MDF;2000;1000;1;
panel;MDF2;2000;1500;1;

sheet assignment lines
 recognized heading for lines is highlighted: “panel;”
 subsequent fields are interpreted according to the formatting as-

signed here in the first line of the file

part;A1;1000;300;30;0;;;1
part;A2;750;250;30;0;;;1
part;A3;300;250;30;0;;;1
part;A4;150;130;50;10;;;1
part;A5;180;150;0;20;;;0

rectangle assignment lines
 recognized heading for lines is highlighted: “part;”
 subsequent fields are interpreted according to the formatting as-

signed here in the second line of the file

Formatting string is considered valid if it assigns the fields corresponding to: length, height, quantity. Each

field is marked with a univocal string of up to two characters in length.

Let us see the full list:

 e enable line (interprets: 0/1, yes/no, on/off, true/false) – (default=1)

 d element description – (default=””)

 l element length dimension

 h element height dimension

 s element thickness dimension

 n quantity of the element

 x extra quantity (only for rectangles)

 m material

 g grain (interprets: 1/2, x/y) – (default=0)

 r rotation possible (only for rectangles) (interprets: 0/1, yes/no, on/off, true/false) – (de-

fault=0)

 p priority

 et top edge of rectangle (maximum format: “thickness|name|cut flag”. E.g. “3.0|abc456|0”)

 eb bottom edge of rectangle (format: see previous field)

 er right edge of rectangle (format: see previous field)

 el left edge of rectangle (format: see previous field)

 a1 Param1 field of rectangle

 a2;a3;a4;a5;a6;a7;a8:a9;a10;a11;a12;a13;a14;a15

Fields (Param2,…,Param15) of rectangle

 mt top margin of sheet

 mb bottom margin of sheet

 mr right margin of sheet

 ml left margin of sheet

 y scrap sheet information (interprets: 0/1, yes/no, on/off, true/false).

In the example above:

• the formatting string of sheets assigns “d;l;h;n;m;g;p”:

 “d”: assigns the Label field in OneSheet structure

 “l”: assigns the Length field in structure

 “h”: assigns the Height field in structure

 “n”: assigns the N field in structure

 “m”: assigns the Material field in structure

 “g”: assigns the Grain field in structure

 “P”: assigns the Priority field in structure

• the formatting string of rectangles assigns “d;l;h;n;x;m;g;p;r”:

 “d”: assigns the Label field in OneRect structure

 “l”: assigns the Length field in structure

 “h”: assigns the Height field in structure

 “n”: assigns the N field in structure

 “x”: assigns the Extra field in structure

 “m”: assigns the Material field in structure

 “g”: assigns the Grain field in structure

 “p”: assigns the Priority field in structure

TpaCutOEM Library 37

 “r”: assigns the Rotate field in structure.

4. GUIDE TO USING THE LIBRARY

The purpose of this chapter is to provide you with the necessary information for integrating the TPA_C library

into your application.

4.1. TYPICAL FLOW CHART

The following sequence describes a basic use of the library:

1. Create an instance of the TpaCutOEM.TpaRctCut() class

2. Carry out preliminary checks of general operation (key presence check)

3. Assignment of general operation settings (see: NumberCustom, NumberRectParam, …)

4. Assignment of general project settings (see: Unit, Direction, …)

5. Assignment of rectangles with AddRct() function calls

6. Assignment of sheets with AddSheet() function calls

7. Start optimization procedure with Compute() function call

8. Acquisition of results with call to functions: NumberOfSolutions, SelectSolution, …, …

9. Autonomous acquisition/processing of efficiency information about class optimization and assignments

(EstimatedTime, EstimatedCost)

10. Saving optimization report (Export).

The order in which settings, rectangles and sheets are assigned is indifferent: the one proposed is only indic-

ative.

The set of general settings, rectangles and sheets is what is referred to as the cutting pattern, as it identifies

the set of data required to perform an optimization.

4.2. PRELIMINARY CHECKS

Preliminary check of the key presence can be useful and necessary to adapt your application's functionalities:

• Check the key presence and validity by querying IsValidLicense

Please note that the key check is performed both on time basis (i.e., every X seconds) and contextually (i.e.,

with call to specific functions): in order to ensure normal operation, it is therefore recommended not to re-

move the key during the execution of your application.

4.3. ASSIGNMENT OF GENERAL OPERATION SETTINGS

It is generally necessary to make a preliminary assignment of the general operation settings. This information

does not change as the project changes, as this is usually attributable to options of general operation of an

application.

4.4. ASSIGNMENT OF GENERAL PROJECT SETTINGS

It is necessary to make a preliminary assignment of general project settings, which may change for each pro-

ject.

Preliminary assignment of settings can also be made by reading from a previously saved file: see SavePro-

ject(), LoadProject() functions.

TpaCutOEM Library 38

4.5. ASSIGNMENT OF RECTANGLES

We move on to assign the list of rectangles.

There are a few key points to note when assigning rectangles:

- Each rectangle has a univocal, strictly positive numerical identifier (> 0): ID field in OneRect structure

- It is therefore not possible to assign the same ID for several rectangles

- Identifiers can be assigned in any order, not necessarily in a row

- Note that IDs play an important role in sorting rectangles: as other notable settings (e.g. priority, area

of rectangle) it is the ID that decides which rectangle has the highest placement priority in the optimiza-

tion process.

To add a rectangle, call the AddRct() function.

To delete rectangles, call the ClearRct() function.

4.6. ASSIGNMENT OF SHEETS

We move on to assign the sheet list.

As with rectangles, there are a few key points to note when assigning sheets:

- Each sheet has a univocal, strictly positive numerical identifier (> 0): ID field in OneSheet structure

- Therefore, it is not possible to assign the same ID for multiple sheets

- Identifiers can be assigned in any order, not necessarily in a row

- Keep in mind that IDs play an important role in sorting sheets: as other notable settings (e.g., priority,

scrap information, size) it is the ID that decides which sheet has the highest priority of use in the opti-

mization process.

To add a sheet, call the AddSheet() function.

To delete the list of sheets, call the ClearSheet() function.

4.7. PERFORMANCE OF THE CUT OPTIMIZATION

To start a project optimization you need to call the Compute function.

Rectangle and sheet checks are executed prior to optimization, which can also cause the function to return

with error and cancel the optimization:

• there must be rectangles requested for placements and sheets available

• checking the matching filters (thickness, material) must be able to match at least one rectangle to a

sheet.

4.7.1. ACQUIRING THE RESULT OF THE SOLUTION

After optimization, you can acquire the results of the cutting solution.

Instead, a set of functions captures all the information related to the optimization solution:

• NumberOfSolutions: number of solutions calculated by the optimizer

• FitnessSheet: efficiency of the solution

• SolutionSheets: information about the number of cutting patterns of the solution

• UsedRects: information about the number of placements of the solution or a sheet and/or type of rec-

tangle

• ReadResolRect: information about rectangles for a single sheet of the solution

• ReadResolCut: information on cuts for a single sheet of the solution

• Export: saves the solution to file (XML format)

4.7.1.1. EXAMPLE CODE: HOW TO ACQUIRE GENERAL INFORMATION OF THE SOLUTION

SHEETS

TpaCutOEM Library 39

TpaCutOEM.TpaRctCut optimizeObj=new TpaCutOEM.TpaRctCut ();

…

//Assignment fields on component query

OneRect OneRect = new OneRect();

//query cycle on solution sheets

int IndexSheet = 0; //sheet index

for (IndexSheet = 0; IndexSheet < optimizeObj.SolutionSheets; IndexSheet++)

{

//index sheet ID (IndexSheet)

int IdSheet = optimizeObj.GetSheetID(IndexSheet);

//sheet repetition

int sheetRepetition = optimizeObj.NumberOfRepetitions(IndexSheet);

// …

//acquisition cycle of sheet placements

//……

}

4.7.1.2. EXAMPLE CODE: ACQUIRING CYCLE OF SHEET PLACEMENTS

// IndexSheet = sheet index (see: previous cycle)

int IndexRct = 0; //placement index on sheet

OneRect oneRect=new OneRect();

for (IndexRct = 0; IndexRct < UsedRects(IndexSheet, 0); IndexRct ++)

{
double qx = 0.0, qy = 0.0;
bool rotate = false;
//reads the position and rotation of the inserted workpiece
int ID = optimizeObj.ReadResolRect(IndexSheet, IndexRct, ref qx, ref qy, ref rotate);

//reads the dimensions and features of the inserted piece

OptimizeObj.ReadRect(ID, ref OneRect);

//…

}

4.7.1.3. EXAMPLE CODE: ACQUIRING CYCLE OF SHEET CUTS

// IndexSheet = sheet index (see: previous cycle)

for (idxP = 0; idxP < optimizeObj.NumberOfCuts(IndexSheet); idxP++)

 {

 double xStart = 0, yStart = 0, xEnd = 0, yEnd = 0, thickness = 0;

 int orientation = 0;

 int levelCut = optimizeObj.ReadResolCut(i, idxP, ref xStart, ref yStart, ref xEnd, ref yEnd,

 ref orientation, ref thickness);

//…

}

4.7.2. MANAGING MULTIPLE SOLUTIONS

It is possible that the optimizer finds more solutions, up to a maximum of 5.

When optimization is performed, the first solution among the calculated ones is automatically set as the cur-

rent solution.

All calculated solutions remain available, with the ability to navigate between them by changing the current

solution to an appropriate specification.

The current solution can be saved to a file by calling the Export function.

4.7.2.1. EXAMPLE CODE: NAVIGATION BETWEEN MULTIPLE SOLUTIONS

TpaCutOEM Library 40

TpaCutOEM.TpaRctCut optimizeObj=new TpaCutOEM.TpaRctCut();

// GoToNextSolution: Move to the next calculated solution

Bool GoToNextSolution()

{

If (optimizeObj.SelectSolution < optimizeObj.NumberOfSolution)

{

optimizeObj.SelectSolution = optimizeObj.SelectSolution+1;

return true;

}

return false;

}

// GoToPrevSolution: Moves to the previous calculated solution

bool GoToPrevSolution()

{

If (optimizeObj.SelectSolution >0)

{

optimizeObj.SelectSolution = optimizeObj.SelectSolution-1;

return true;

}

return false;

}

4.8. SAVE AND READ A TPA_C PROJECT

You can save and retrieve a project using the SaveProject e LoadProject functions.

The two functions also allow saving and retrieving the general settings of a project.

After executing LoadProject, an external application needs to update project settings, rectangles and sheets,

reading information from TPA_C.

4.8.1. EXAMPLE CODE

TpaCutOEM.TpaRctCut optimizeObj=new TpaCutOEM.TpaRctCut();

//Structures

OneRect ItemRect=new OneRect();

OneSheet ItemSheet=new OneSheet();

// Reads the project

if (optimizeObj.LoadProject ("C:\projects\one.xml", true) == CutError.ErrorNone)

{

//---------- Project settings

myUnit= optimizeObj.Unit;

myDirection= optimizeObj.Direction;

myCorner= optimizeObj.Corner;

myFiTool= optimizeObj.CutterDiameter;

myTensionGap= optimizeObj.TensionGap;

myMaxCutLevels= optimizeObj.MaxCutLevels;

myPreCut= optimizeObj.PreCut;

myLongCut= optimizeObj.LongCut;

myTransvCut= optimizeObj.TransvCut;

myZCut= optimizeObj.ZCut;

myInfoCst[ni = 0]= optimizeObj.Custom1;

myInfoCst[++ni]= optimizeObj.Custom2;

….

myInfoCst[++ni]= optimizeObj.Custom10;

TpaCutOEM Library 41

//---------- Reads rectangles

for (int idxElement=0; idxElement< optimizeObj.CountRect; idxElement++)

{

optimizeObj.ReadRectIndex (idxElement, ref ItemRect);

// …

// Reading and processing data

 //…

}

//---------- Reads the sheets

for (int idxElement=0; idxElement< optimizeObj.CountSheet; idxElement++)

{

optimizeObj.ReadSheetIndex (idxElement, ref ItemSheet);

// …

// Reading and processing data

 //…

}

}

	1. Presentation
	1.1. Versions
	1.2. License
	1.3. Ownership and copyright

	2. User Guide
	2.1. Cut Optimization
	2.2. Units and coordinates
	2.3. Direction and Development corner
	2.4. Matching groups and filters
	2.4.1. Grain control

	2.5. Cuts
	2.5.1. Cutting Levels
	2.5.2. Trims
	2.5.3. Tension Free Cut
	2.5.4. Sheet margins

	2.6. Optimization in TPA_C
	2.6.1. Progressive optimizations
	2.6.2. Optimization criteria and priorities
	2.6.2.1. Use of Sheets
	2.6.2.2. Use of Rectangles
	Extra placements

	2.7. Support for managing cutting projects
	2.8. Known limits of the library

	3. Guide to the library functions
	3.1. License Management
	3.1.1. IsValidLicense

	3.2. Constants
	3.3. Enumerations
	3.3.1. CutError

	3.4. Structures
	3.4.1. OneRect
	3.4.2. OneSheet

	3.5. Definition of Functions
	3.5.1. General Functions
	3.5.1.1. Version
	3.5.1.2. LastError
	3.5.1.3. ErrorMessage

	3.5.2. Functions corresponding to general settings of cut optimization
	3.5.2.1. NumberCustom
	3.5.2.2. NumberRectParam
	3.5.2.3. EnableRectEdge
	3.5.2.4. OrderSheetDim
	3.5.2.5. OrderBeforeScrap
	3.5.2.6. OrderStrips
	3.5.2.7. OrderSubStrips

	3.5.3. Functions related to general assignments of a project
	3.5.3.1. Unit
	3.5.3.2. CutterDiameter
	3.5.3.3. Direction
	3.5.3.4. Corner
	3.5.3.5. MaxCutLevels
	3.5.3.6. TensionGap
	3.5.3.7. PreCut
	3.5.3.8. Longcut
	3.5.3.9. Transvcut
	3.5.3.10. Zcut
	3.5.3.11. Custom1, Custom2, …, Custom10
	3.5.3.12. ClearAll

	3.6. Definition of rectangles
	3.6.1. AddRct
	3.6.2. ClearRct
	3.6.3. CountRect
	3.6.4. ReadRect
	3.6.5. ReadRectIndex

	3.7. Definition of sheets
	3.7.1. AddSheet
	3.7.2. ClearSheet
	3.7.3. CountSheet
	3.7.4. ReadSheet
	3.7.5. ReadSheetIndex

	3.8. Cutting solution
	3.8.1. Compute

	3.9. Optimization results
	3.9.1. NumberOfSolutions
	3.9.2. SelectSolution
	3.9.3. SolutionSheets
	3.9.4. GetSheetId
	3.9.5. NumberOfRepetitions
	3.9.6. UsedSheets
	3.9.7. UsedRects
	3.9.8. FitnessSheet
	3.9.9. ReadResolRect
	3.9.10. NumberOfCuts
	3.9.11. ReadResolCut
	3.9.12. CutLinear
	3.9.13. CutArea
	3.9.14. MarginArea
	3.9.15. GetWaste
	3.9.16. Estimated time
	3.9.17. Estimated cost
	3.9.18. Export
	File structure corresponding to a cutting pattern
	<GENERALSETTINGS> node
	<TECHSETTINGS> node
	<DIM> node
	<DIMTRIMS> node
	<DATA> node
	<PIECESLIST> node
	<DRAW> node
	<PANEL> node
	<STRIPE> node
	<ELEMENT> node
	<ELEMENTZ> node
	<ELEMENTW> node
	<ELEMENT5> node
	<ELEMENT6> node
	<LABEL> node

	3.10. Project serialization functions
	3.10.1. SaveProject
	3.10.2. LoadProject
	3.10.3. ImportProject

	4. Guide to using the library
	4.1. Typical flow chart
	4.2. Preliminary checks
	4.3. Assignment of general operation settings
	4.4. Assignment of general project settings
	4.5. Assignment of rectangles
	4.6. Assignment of sheets
	4.7. Performance of the cut optimization
	4.7.1. Acquiring the result of the solution
	4.7.1.1. Example code: How to acquire general information of the solution sheets
	4.7.1.2. Example code: Acquiring cycle of sheet placements
	4.7.1.3. Example code: Acquiring cycle of sheet cuts

	4.7.2. Managing multiple solutions
	4.7.2.1. Example code: Navigation between Multiple solutions

	4.8. Save and read a TPA_C project
	4.8.1. Example code

